Caco-2单细胞模型及共培养模型的应用进展

孟云, 徐宇航, 吴龙, 储晓琴

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (14) : 1271-1275.

PDF(918 KB)
PDF(918 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (14) : 1271-1275. DOI: 10.11669/cpj.2023.14.003
综述

Caco-2单细胞模型及共培养模型的应用进展

  • 孟云1, 徐宇航1, 吴龙1, 储晓琴1,2,3*
作者信息 +

Progress in Application of Caco-2 Single Cell Model and Co-culture Model

  • MENG Yun1, XU Yu-hang1, WU Long1, CHU Xiao-qin1,2,3*
Author information +
文章历史 +

摘要

近年来,人结肠腺癌细胞(Caco-2)模型常被用来预测药物或生物活性物质的人体小肠吸收及转运机制,但因其不能准确模拟肠道环境导致其应用受到一定限制。随着细胞生物学和分子生物学的发展,将Caco-2细胞与其他细胞进行共培养,这在一定程度上解决了Caco-2细胞模型的局限性。笔者对Caco-2细胞模型以及与其他细胞的共培养模型在药物以及食品研究中的最新应用进展进行综述。

Abstract

In recent years, the Caco-2 cell model has been used to predict human intestinal absorption of drugs or bioactive substances and study the mechanisms of drug transport. However, its application is limited due to its inability to accurately simulate the intestinal environment. With the development of cell biology and molecular biology, the co-culture of Caco-2 cells with other cells solves the limitations brought by a single Caco-2 cell model to a certain extent. This paper reviews the latest progress in application of Caco-2 cell model and some co-culture models with other cells in drug and food research.

关键词

Caco-2细胞 / 药物吸收 / 共培养模型 / 体外细胞模型

Key words

Caco-2 cell / drug absorption / co-culture model / in vitro cell model

引用本文

导出引用
孟云, 徐宇航, 吴龙, 储晓琴. Caco-2单细胞模型及共培养模型的应用进展[J]. 中国药学杂志, 2023, 58(14): 1271-1275 https://doi.org/10.11669/cpj.2023.14.003
MENG Yun, XU Yu-hang, WU Long, CHU Xiao-qin. Progress in Application of Caco-2 Single Cell Model and Co-culture Model[J]. Chinese Pharmaceutical Journal, 2023, 58(14): 1271-1275 https://doi.org/10.11669/cpj.2023.14.003
中图分类号: R965.1   

参考文献

[1] ZHOU Y, HU W, ZHANG X, et al. Cellular uptake and transport characteristics of FL118 derivatives in Caco-2 cell monolayers . Chem Pharm Bull (Tokyo), 2021, 69(11): 1054-1060.
[2] WANG G N, LI Y P, YUAN S K, et al. The intestinal absorption mechanism of chicoric acid and its bioavailability improvement with chitosan . Heliyon, 2022, 8(7): e09955. Doi: 10.1016/j.heliyon.2022.e09955.
[3] WU X F, CAI J, WANG J T, et al. Transport of lipoamide and lipoic acid in Caco-2 Cell monolayer model . Chin Pharm J(中国药学杂志), 2020, 55(7): 542-548.
[4] XU Q, OUYANG Y, WU H F. Absorption mechanism of baicalin and its solid lipid nanoparticles on Caco-2 cells . Chin Pharm J (中国药学杂志), 2019, 54(12): 1000-1006.
[5] NARUMI K, KOBAYASHI M, KONDO A, et al. Characterization of loxoprofen transport in Caco-2 cells: the involvement of a proton-dependent transport system in the intestinal transport of loxoprofen . Biopharm Drug Dispos, 2016, 37(8): 447-455.
[6] YAN Y, REN F, WANG P, et al. Synthesis and evaluation of a prodrug of 5-aminosalicylic acid for the treatment of ulcerative colitis . Iran J Basic Med Sci, 2019, 22(12): 1452-1461.
[7] WANG C, ZHOU Y, GONG X, et al. In vitro and in situ study on characterization and mechanism of the intestinal absorption of 2,3,5,4′-tetrahydroxy-stilbene-2-O-β-D-glucoside . BMC Pharmacol Toxicol, 2020, 21(1): 7. Doi: 10.1186/s40360-020-0384-9.
[8] CUI X Y, CUI T, WU W D, et al. Research progress on drug transmembrane transport mechanism . Drug Eval Res(药物评价研究), 2018, 41(6): 973-979.
[9] LIANG X L, ZHAO L J, LIAO Z G, et al. Transport properties of puerarin and effect of Radix Angelicae Dahuricae extract on the transport of puerarin in Caco-2 cell model . J Ethnopharmacol, 2012, 144(3): 677-682.
[10] XU R, YUAN Y, QI J, et al. Elucidation of the intestinal absorption mechanism of loganin in the human intestinal Caco-2 cell model . Evid Based Complement Alternat Med, 2018, 2018:8340563. Doi: 10.1155/2018/8340563.
[11] XIANG D, FAN L, HOU X L, et al. Uptake and transport mechanism of dihydromyricetin across human intestinal Caco-2 cells . J Food Sci, 2018, 83(7): 1941-1947.
[12] SUN S, ZHANG H, SUN F, et al. Intestinal transport of sophocarpine across the Caco-2 cell monolayer model and quantification by LC/MS . Biomed Chromatogr, 2014, 28(6): 885-890.
[13] DUAN J, XIE Y, LUO H, et al. Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it . Food Chem Toxicol, 2014, 66: 313-320.
[14] HU J N, ZOU X G, HE Y, et al. Esterification of quercetin increases its transport across human Caco-2 cells . J Food Sci, 2016, 81(7): H1825-H1832.
[15] LI Y J, HU X B, LU X L, et al. Nanoemulsion-based delivery system for enhanced oral bioavailability and caco-2 cell monolayers permeability of berberine hydrochloride . Drug Deliv, 2017, 24(1): 1868-1873.
[16] FRANK J, SCHIBORR C, KOCHER A, et al. Transepithelial transport of curcumin in Caco-2 cells is significantly enhanced by micellar solubilisation . Plant Foods Hum Nutr, 2017, 72(1): 48-53.
[17] LIU J W, LIANG Z H. Progress in evaluation of mycotoxins toxicity using Caco-2 cells model . J Food Saf Qual (食品安全质量检测学报), 2018, 9(22): 5823-5831.
[18] EL-GARAWANI I M, EL-NABI S H, DAWOUD G T, et al. Triggering of apoptosis and cell cycle arrest by fennel and clove oils in Caco-2 cells: the role of combination . Toxicol Mech Methods, 2019, 29(9): 710-722.
[19] CHEN W, FENG L, SHEN Y, et al. Myricitrin inhibits acrylamide-mediated cytotoxicity in human Caco-2 cells by preventing oxidative stress . Biomed Res Int, 2013, 2013: 724183. Doi: 10.1155/2013/724183.
LIANG X L, ZHU M L, ZHAO L J, et al. Caco-2 cell monolayer model was used to study the mechanism of Baicalin transport in Scutellaria baicalensis extract and the effect of Angelica dahurica extract on it . China J Chin Mater Med (中国中药杂志), 2013, 38(14): 2389-2393.
[21] DANG J, LI Y, LIU M C, et al. Transport analysis of active ingredients compatibility between aconiti lateralis Radix Praeparata and Rhei Radix et Rhizoma in Caco-2 Cell model . Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2018, 24(7): 1-6.
[22] FENG L, XIAO X, LIU J, et al. Immunomodulatory Effects of Lycium barbarum polysaccharide extract and its uptake behaviors at the cellular level . Molecules, 2020, 25(6):1351. Doi: 10.3390/molecules25061351.
[23] BAO X, YUAN X, FENG G, et al. Structural characterization of calcium-binding sunflower seed and peanut peptides and enhanced calcium transport by calcium complexes in Caco-2 cells . J Sci Food Agric, 2021, 101(2): 794-804.
[24] XU S S, MA Y Q, WANG J, et al. Absorption ability of kiwi seed oil microcapsules in Caco-2 cell monolayer . Food Ind (食品工业), 2021, 42(1): 232-235.
[25] PAN F, HAN L, ZHANG Y, et al. Optimization of Caco-2 and HT29 co-culture in vitro cell models for permeability studies . Int J Food Sci Nutr, 2015, 66(6): 680-685.
[26] GURI A, GULSEREN I, CORREDIG M. Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells . Food Funct, 2013, 4(9): 1410-1419.
[27] CAI Y, LIU L, XIA M, et al. SEDDS facilitate cinnamaldehyde crossing the mucus barrier: The perspective of mucus and Caco-2/HT29 co-culture models . Int J Pharm, 2022, 614: 121461. Doi: 10.1016/j.ijpharm.2022.121461.
[28] PARLESAK A, HALLER D, BRINZ S, et al. Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria . Scand J Immunol, 2004, 60(5): 477-485.
[29] MORINI J, BABINI G, BARBIERI S, et al. The interplay between radioresistant Caco-2 cells and the immune system increases epithelial layer permeability and alters signaling protein spectrum . Front Immunol, 2017, 8: 223. Doi: 10.3389/fimmu.2017.00223.
[30] NOEL G, BAETZ N W, STAAB J F, et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions . Sci Rep, 2017, 7: 45270. Doi: 10.1038/srep45270.
[31] KMPFER A A M, URBAN P, LA SPINA R, et al. Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine . Toxicol Vitro, 2020, 63: 104738. Doi: 10.1016/j.tiv.2019.104738.
[32] MONTSERRAT-de la PAZ S, VILLANUEVA A, PEDROCHE J, et al. Antioxidant and anti-inflammatory properties of bioavailable protein hydrolysates from lupin-derived agri-waste . Biomolecules, 2021, 11(10) :1458. Doi: 10.3390/biom11101458.
[33] YANG M, LU X, XU J, et al. Cellular uptake, transport mechanism and anti-inflammatory effect of cyanidin-3-glucoside nanoliposomes in Caco-2/RAW 264.7 co-culture model . Front Nutr, 2022, 9: 995391. Doi: 10.3389/fnut.2022.995391.
[34] HU X, YU Q, HOU K, et al. Regulatory effects of Ganoderma atrum polysaccharides on LPS-induced inflammatory macrophages model and intestinal-like Caco-2/macrophages co-culture inflammation model . Food Chem Toxicol, 2020, 140: 111321. Doi: 10.1016/j.fct.2020.111321.
[35] KAMILOGLU S, CAPANOGLU E, GROOTAERT C, et al. Anthocyanin absorption and metabolism by human intestinal Caco-2 cells: a review . Int J Mol Sci, 2015, 16(9): 21555-21574.
[36] KUNTZ S, ASSEBURG H, DOLD S, et al. Inhibition of low-grade inflammation by anthocyanins from grape extract in an in vitro epithelial-endothelial co-culture model . Food Funct, 2015, 6(4): 1136-1149.
[37] KAMILOGLU S, GROOTAERT C, CAPANOGLU E, et al. Anti-inflammatory potential of black carrot (Daucus carota L.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells . Mol Nutr Food Res, 2017, 61(2). Doi: 10.1002/mnfr.201600455.
[38] SADEGHI EKBATAN S, ISKANDAR M M, SLENO L, et al. Absorption and metabolism of phenolics from digests of polyphenol-rich potato extracts using the Caco-2/HepG2 Co-culture system . Foods, 2018, 7(1):8. Doi: 10.3390/foods7010008.
[39] YAMASHITA S, YOKOYAMA Y, HASHIMOTO T, et al. A novel in vitro co-culture model comprised of Caco-2/RBL 2H3 cells to evaluate anti-allergic effects of food factors through the intestine . J Immunol Methods, 2016, 435: 1-6.
[40] LE HEGARAT L, HUET S, FESSARD V. A co-culture system of human intestinal Caco-2 cells and lymphoblastoid TK6 cells for investigating the genotoxicity of oral compounds . Mutagenesis, 2012, 27(6): 631-636.
[41] XIE N, HUANG X, YANG C, et al. Artificial sweeteners affect the glucose transport rate in the Caco-2/NCI-H716 co-culture model . J Sci Food Agric, 2020, 100(13): 4887-4892.

基金

国家自然科学基金项目资助(81803831);安徽省科技重大专项资助(201903a07020007)
PDF(918 KB)

Accesses

Citation

Detail

段落导航
相关文章

/